**Author**:

**Publisher:** Academic Press

**ISBN:** 9780080874579

**Category : **Mathematics

**Languages : **en

**Pages : **306

Get Book

**Book Description**
The first four chapters of this volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).

**Author**:

**Publisher:** Academic Press

**ISBN:** 9780080874579

**Category : **Mathematics

**Languages : **en

**Pages : **306

View

**Book Description**
The first four chapters of this volume are based on lectures given by Stroock at MIT in 1987. They form an introduction to the basic ideas of the theory of large deviations and make a suitable package on which to base a semester-length course for advanced graduate students with a strong background in analysis and some probability theory. A large selection of exercises presents important material and many applications. The last two chapters present various non-uniform results (Chapter 5) and outline the analytic approach that allows one to test and compare techniques used in previous chapters (Chapter 6).

**Author**: Frederick John Evans

**Publisher:**
**ISBN:**
**Category : **Compass

**Languages : **en

**Pages : **204

View

**Book Description**

**Author**: Richard.S. Ellis

**Publisher:** Springer Science & Business Media

**ISBN:** 1461385334

**Category : **Science

**Languages : **en

**Pages : **365

View

**Book Description**
This book has two main topics: large deviations and equilibrium statistical mechanics. I hope to convince the reader that these topics have many points of contact and that in being treated together, they enrich each other. Entropy, in its various guises, is their common core. The large deviation theory which is developed in this book focuses upon convergence properties of certain stochastic systems. An elementary example is the weak law of large numbers. For each positive e, P{ISn/nl 2: e} con verges to zero as n --+ 00, where Sn is the nth partial sum of indepen dent identically distributed random variables with zero mean. Large deviation theory shows that if the random variables are exponentially bounded, then the probabilities converge to zero exponentially fast as n --+ 00. The exponen tial decay allows one to prove the stronger property of almost sure conver gence (Sn/n --+ 0 a.s.). This example will be generalized extensively in the book. We will treat a large class of stochastic systems which involve both indepen dent and dependent random variables and which have the following features: probabilities converge to zero exponentially fast as the size of the system increases; the exponential decay leads to strong convergence properties of the system. The most fascinating aspect of the theory is that the exponential decay rates are computable in terms of entropy functions. This identification between entropy and decay rates of large deviation probabilities enhances the theory significantly.

**Author**: Frank den Hollander

**Publisher:** American Mathematical Soc.

**ISBN:** 0821871722

**Category : **Mathematics

**Languages : **en

**Pages : **146

View

**Book Description**

**Author**: L. Saulis

**Publisher:** Springer Science & Business Media

**ISBN:** 9401135304

**Category : **Mathematics

**Languages : **en

**Pages : **232

View

**Book Description**
"Et moi ... - si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais poin t aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O.H ea viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service. topology has rendered mathematical physics .. .':: 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d 'e1:re of this series

**Author**: S. R. S. Varadhan

**Publisher:** American Mathematical Soc.

**ISBN:** 082184086X

**Category : **Large deviations

**Languages : **en

**Pages : **104

View

**Book Description**
The theory of large deviations deals with rates at which probabilities of certain events decay as a natural parameter in the problem varies. This book, which is based on a graduate course on large deviations at the Courant Institute, focuses on three concrete sets of examples: (i) diffusions with small noise and the exit problem, (ii) large time behavior of Markov processes and their connection to the Feynman-Kac formula and the related large deviation behavior of the number of distinct sites visited by a random walk, and (iii) interacting particle systems, their scaling limits, and large deviations from their expected limits. For the most part the examples are worked out in detail, and in the process the subject of large deviations is developed. The book will give the reader a flavor of how large deviation theory can help in problems that are not posed directly in terms of large deviations. The reader is assumed to have some familiarity with probability, Markov processes, and interacting particle systems.

**Author**: John Adams Howell

**Publisher:**
**ISBN:**
**Category : **Compass

**Languages : **en

**Pages : **152

View

**Book Description**

**Author**: Amir Dembo

**Publisher:** Springer Science & Business Media

**ISBN:** 3642033113

**Category : **Science

**Languages : **en

**Pages : **396

View

**Book Description**
Large deviation estimates have proved to be the crucial tool required to handle many questions in statistics, engineering, statistial mechanics, and applied probability. Amir Dembo and Ofer Zeitouni, two of the leading researchers in the field, provide an introduction to the theory of large deviations and applications at a level suitable for graduate students. The mathematics is rigorous and the applications come from a wide range of areas, including electrical engineering and DNA sequences. The second edition, printed in 1998, included new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications were sharpened, new exercises added, and the bibliography updated. The present soft cover edition is a corrected printing of the 1998 edition.

**Author**: O. V. Goulinskï

**Publisher:** VSP

**ISBN:** 9789067641487

**Category : **Mathematics

**Languages : **en

**Pages : **200

View

**Book Description**
This book is mainly based on the Cramir--Chernoff renowned theorem, which deals with the 'rough' logarithmic asymptotics of the distribution of sums of independent, identically distributed random variables. The authors approach primarily the extensions of this theory to dependent, and in particular, nonmarkovian cases on function spaces. Recurrent algorithms of identification and adaptive control form the main examples behind the large deviation problems in this volume. The first part of the book exploits some ideas and concepts of the martingale approach, especially the concept of the stochastic exponential. The second part of the book covers Freindlin's approach, based on the Frobenius-type theorems for positive operators, which prove to be effective for the cases in consideration.

**Author**: Jin Feng

**Publisher:** American Mathematical Soc.

**ISBN:** 1470418703

**Category : **Large deviations

**Languages : **en

**Pages : **426

View

**Book Description**
The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.